> "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E". This definition is notable for its defining machine learning in fundamentally operational rather than cognitive terms, thus following Alan Turing's proposal in Turing's paper "Computing Machinery and Intelligence" that the question "Can machines think?" be replaced with the question "Can machines do what we (as thinking entities) can do?"
It's important, because we don't need to care about cognition or consciousness, and we can still write programs that solve problems well by making inferences from patterns in data.
> "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E". This definition is notable for its defining machine learning in fundamentally operational rather than cognitive terms, thus following Alan Turing's proposal in Turing's paper "Computing Machinery and Intelligence" that the question "Can machines think?" be replaced with the question "Can machines do what we (as thinking entities) can do?"
It's important, because we don't need to care about cognition or consciousness, and we can still write programs that solve problems well by making inferences from patterns in data.