> Yes that might happen. But it'll happen at a number much greater than 50X.
It's difficult to say. We are not running out of land, that's for sure. But we are running out of cheap land. Or rather land where it is economical to build solar. Sahara has plenty of empty land, and it is plenty sunny all year long, but there are civil wars more often than not, various militias, corrupt governments, etc. The US has lots of deserts, but also lots of groups with various agendas that find ways to delay projects, and delays can transform good projects into bad projects.
As a concrete example, take California. California is very proud to be a leader in environmental issues. You can find on the state website the installed capacity per year. For the last 5 years it has been [1], in GW: 1.2 (in 2020), 1.5, 2.0, 2.3, 0.9 (in 2024, so far). The year over year growth rates were 26%, 35%, 10% and for this year -60%. This year is not over, and it's possible the numbers are not up to date, but it's quite unlikely we'll get to match last year's numbers, let alone see a double digit growth.
Or take Texas. Wikipedia has their annual numbers between 2007 and 2023 [2]. I did the math, and between 2007 and 2017 they experienced a 90% annual growth. Nice Moore's law at work there. For the next 4 years the average annual growth was 60%. And for the last 2 years, it was 28%. Nothing to sneeze at, but the trend is clear. Why, if the cost of the panels went down?
> Thousands of flights per year
Elon is not talking about thousands of flights per year. Thousands of flights per day. Millions per year. A million launches of 5 kT CO2e each equal 5 GT CO2 each. That's about 10% of the current worldwide emissions. Or about 30% of the current emissions that come from power generation. If we are to use synthetic fuel instead of fossil fuel, and you have a 30% efficiency of making synfuel (which is what a quick google search indicates), then you have a 2x increase in electricity needs.
It's difficult to say. We are not running out of land, that's for sure. But we are running out of cheap land. Or rather land where it is economical to build solar. Sahara has plenty of empty land, and it is plenty sunny all year long, but there are civil wars more often than not, various militias, corrupt governments, etc. The US has lots of deserts, but also lots of groups with various agendas that find ways to delay projects, and delays can transform good projects into bad projects.
As a concrete example, take California. California is very proud to be a leader in environmental issues. You can find on the state website the installed capacity per year. For the last 5 years it has been [1], in GW: 1.2 (in 2020), 1.5, 2.0, 2.3, 0.9 (in 2024, so far). The year over year growth rates were 26%, 35%, 10% and for this year -60%. This year is not over, and it's possible the numbers are not up to date, but it's quite unlikely we'll get to match last year's numbers, let alone see a double digit growth.
Or take Texas. Wikipedia has their annual numbers between 2007 and 2023 [2]. I did the math, and between 2007 and 2017 they experienced a 90% annual growth. Nice Moore's law at work there. For the next 4 years the average annual growth was 60%. And for the last 2 years, it was 28%. Nothing to sneeze at, but the trend is clear. Why, if the cost of the panels went down?
> Thousands of flights per year
Elon is not talking about thousands of flights per year. Thousands of flights per day. Millions per year. A million launches of 5 kT CO2e each equal 5 GT CO2 each. That's about 10% of the current worldwide emissions. Or about 30% of the current emissions that come from power generation. If we are to use synthetic fuel instead of fossil fuel, and you have a 30% efficiency of making synfuel (which is what a quick google search indicates), then you have a 2x increase in electricity needs.
[1] https://www.californiadgstats.ca.gov/charts/
[2] https://en.wikipedia.org/wiki/Solar_power_in_Texas