For me it was less about the idea of how likely you'd quickly it converges to you almost certainly outing them vs misunderstanding the idea that a zero knowledge proof is about, more or less, the "limit" of the validation behavior to an arbitrary point choosable by the tester not necessarily an actual guarantee you can finitely reach the conclusion.
Prior to this I'd only seen "proof" in math where it has meant you can absolutely guarantee there to bo no counterexample not just that it seems impossibly unlikely there could be a counterexample. E.g. the Tarry-Escott problem where we have proof there is no sets exists with n=4 and m=5 even though we haven't ever found numerical values of sets matching that description or Merten's conjecture where the smallest counterexample is estimated to be so large (~10 billion digits) we've not even been able to find the first counterexample value despite knowing it exists due to a proof. On the other side of things we have things like the Goldbach conjecture or Riemann Hypothesis where we've poured our hearts, brains, and souls into trying to find a counterexample or proof and don't claim to have either yet.
Adjusting to that definition of "proof" for the context it all makes a lot more sense now.
Prior to this I'd only seen "proof" in math where it has meant you can absolutely guarantee there to bo no counterexample not just that it seems impossibly unlikely there could be a counterexample. E.g. the Tarry-Escott problem where we have proof there is no sets exists with n=4 and m=5 even though we haven't ever found numerical values of sets matching that description or Merten's conjecture where the smallest counterexample is estimated to be so large (~10 billion digits) we've not even been able to find the first counterexample value despite knowing it exists due to a proof. On the other side of things we have things like the Goldbach conjecture or Riemann Hypothesis where we've poured our hearts, brains, and souls into trying to find a counterexample or proof and don't claim to have either yet.
Adjusting to that definition of "proof" for the context it all makes a lot more sense now.