The point is that LLMs are never right for the right reason. Humans who understand the subject matter can make mistakes, but they are mistakes of a different nature. The issue reminds me of this from Terry Tao (LLMs being not-even pre-rigorous, but adept at forging the style of rigorous exposition):
It is perhaps worth noting that mathematicians at all three of the above stages of mathematical development can still make formal mistakes in their mathematical writing. However, the nature of these mistakes tends to be rather different, depending on what stage one is at:
1. Mathematicians at the pre-rigorous stage of development often make formal errors because they are unable to understand how the rigorous mathematical formalism actually works, and are instead applying formal rules or heuristics blindly. It can often be quite difficult for such mathematicians to appreciate and correct these errors even when those errors are explicitly pointed out to them.
2. Mathematicians at the rigorous stage of development can still make formal errors because they have not yet perfected their formal understanding, or are unable to perform enough “sanity checks” against intuition or other rules of thumb to catch, say, a sign error, or a failure to correctly verify a crucial hypothesis in a tool. However, such errors can usually be detected (and often repaired) once they are pointed out to them.
3. Mathematicians at the post-rigorous stage of development are not infallible, and are still capable of making formal errors in their writing. But this is often because they no longer need the formalism in order to perform high-level mathematical reasoning, and are actually proceeding largely through intuition, which is then translated (possibly incorrectly) into formal mathematical language.
The distinction between the three types of errors can lead to the phenomenon (which can often be quite puzzling to readers at earlier stages of mathematical development) of a mathematical argument by a post-rigorous mathematician which locally contains a number of typos and other formal errors, but is globally quite sound, with the local errors propagating for a while before being cancelled out by other local errors. (In contrast, when unchecked by a solid intuition, once an error is introduced in an argument by a pre-rigorous or rigorous mathematician, it is possible for the error to propagate out of control until one is left with complete nonsense at the end of the argument.)
It is perhaps worth noting that mathematicians at all three of the above stages of mathematical development can still make formal mistakes in their mathematical writing. However, the nature of these mistakes tends to be rather different, depending on what stage one is at:
1. Mathematicians at the pre-rigorous stage of development often make formal errors because they are unable to understand how the rigorous mathematical formalism actually works, and are instead applying formal rules or heuristics blindly. It can often be quite difficult for such mathematicians to appreciate and correct these errors even when those errors are explicitly pointed out to them.
2. Mathematicians at the rigorous stage of development can still make formal errors because they have not yet perfected their formal understanding, or are unable to perform enough “sanity checks” against intuition or other rules of thumb to catch, say, a sign error, or a failure to correctly verify a crucial hypothesis in a tool. However, such errors can usually be detected (and often repaired) once they are pointed out to them.
3. Mathematicians at the post-rigorous stage of development are not infallible, and are still capable of making formal errors in their writing. But this is often because they no longer need the formalism in order to perform high-level mathematical reasoning, and are actually proceeding largely through intuition, which is then translated (possibly incorrectly) into formal mathematical language.
The distinction between the three types of errors can lead to the phenomenon (which can often be quite puzzling to readers at earlier stages of mathematical development) of a mathematical argument by a post-rigorous mathematician which locally contains a number of typos and other formal errors, but is globally quite sound, with the local errors propagating for a while before being cancelled out by other local errors. (In contrast, when unchecked by a solid intuition, once an error is introduced in an argument by a pre-rigorous or rigorous mathematician, it is possible for the error to propagate out of control until one is left with complete nonsense at the end of the argument.)
https://terrytao.wordpress.com/career-advice/theres-more-to-...