Most interesting to me: "Geordie presented graphs that showed D-Wave’s quantum annealer solving its Ising spin problem “faster” than classical simulated annealing and tabu search (where “faster” means ignoring the time for cooling the annealer down, which seemed fair to me). Unfortunately, the data didn’t go up to large input sizes, while the data that did go up to large input sizes only compared against complete classical algorithms rather than heuristic ones. (Of course, all this is leaving aside the large blowups that would likely be incurred in practice, from reducing practical optimization problems to D-Wave’s fixed Ising spin problem.) In summary, while the observed speedup is certainly interesting, it remains unclear exactly what to make of it, and especially, whether or not quantum coherence is playing a role."
Most interesting to me: "Geordie presented graphs that showed D-Wave’s quantum annealer solving its Ising spin problem “faster” than classical simulated annealing and tabu search (where “faster” means ignoring the time for cooling the annealer down, which seemed fair to me). Unfortunately, the data didn’t go up to large input sizes, while the data that did go up to large input sizes only compared against complete classical algorithms rather than heuristic ones. (Of course, all this is leaving aside the large blowups that would likely be incurred in practice, from reducing practical optimization problems to D-Wave’s fixed Ising spin problem.) In summary, while the observed speedup is certainly interesting, it remains unclear exactly what to make of it, and especially, whether or not quantum coherence is playing a role."