I'm sorry, but you have completely misunderstood the purpose of Open API.
It is not a specification to define your business logic classes and objects -- either client or server side. Its goal is to define the interface of an API, and to provide a single source of truth that requests and responses can be validated against. It contains everything you need to know to make requests to an API; code generation is nice to have (and I use it myself, but mainly on the server side, for routing and validation), but not something required or expected from OpenAPI
For what it's worth, my personal preferred workflow to build an API is as follows:
1. Build the OpenAPI spec first. A smaller spec could easily be done by hand, but I prefer using a design tool like Stoplight [0]; it has the best Web-based OpenAPI (and JSON Schema) editor I have encountered, and integrates with git nearly flawlessly.
2. Use an automated tool to generate the API code implementation. Again, a static generation tool such as datamodel-code-generator [1] (which generates Pydantic models) would suffice, but for Python I prefer the dynamic request routing and validation provided by pyapi-server [2].
3. Finally, I use automated testing tools such as schemathesis [3] to test the implementation against the specification.
It is not a specification to define your business logic classes and objects -- either client or server side. Its goal is to define the interface of an API, and to provide a single source of truth that requests and responses can be validated against. It contains everything you need to know to make requests to an API; code generation is nice to have (and I use it myself, but mainly on the server side, for routing and validation), but not something required or expected from OpenAPI
For what it's worth, my personal preferred workflow to build an API is as follows:
1. Build the OpenAPI spec first. A smaller spec could easily be done by hand, but I prefer using a design tool like Stoplight [0]; it has the best Web-based OpenAPI (and JSON Schema) editor I have encountered, and integrates with git nearly flawlessly.
2. Use an automated tool to generate the API code implementation. Again, a static generation tool such as datamodel-code-generator [1] (which generates Pydantic models) would suffice, but for Python I prefer the dynamic request routing and validation provided by pyapi-server [2].
3. Finally, I use automated testing tools such as schemathesis [3] to test the implementation against the specification.
[0] https://stoplight.io/
[1] https://koxudaxi.github.io/datamodel-code-generator/
[2] https://pyapi-server.readthedocs.io
[3] https://schemathesis.readthedocs.io