If anybody in the universe is doing interstellar travel I think they would have developed D-D fusion which is somewhat more difficult than D-³He or D-T fusion but probably possible with the a scaled up version of the same machine.
Outside the frost line there is a lot of water and a higher percentage of D relative to H so it seems possible to "live off the land" between the stars without being dependent on starshine. A D-D reactor would produce ³He and T, a lot of those products would burn up in the reactor because the reaction rates are high but it would probably be possible to separate some of those out and use it as a breeder reactor that makes fuel for D-³He and D-T reactors elsewhere. I could picture the big D-D reactor running on a large comet or dwarf planet like Pluto producing D-³He for smaller reactors on spacecraft. (D-T not only produces a lot of neutrons but the T has a half life of 12 or so years and won't last for long journies.)
My guess is that interstellar travelers would develop a lifestyle that works around the frost line, where generic bodies above a certain size have liquid water inside. If they were grabby they might consume Ceres or Pluto but might not really care about dry, idiosyncratic worlds like the Earth and Mars.
Anybody doing interstellar travel should hang their collective head-analog in shame if they haven't mastered aneutronic p-11B fusion yet. (They will need to have figured out how to reflect xrays.)
Having got used to spending interminable ages out in the infinite chill void, they probably have come to prefer being there, so have no desire to roast deep in a stellar gravity well. Their equipment might not even work if warmed too much.
Outside the frost line there is a lot of water and a higher percentage of D relative to H so it seems possible to "live off the land" between the stars without being dependent on starshine. A D-D reactor would produce ³He and T, a lot of those products would burn up in the reactor because the reaction rates are high but it would probably be possible to separate some of those out and use it as a breeder reactor that makes fuel for D-³He and D-T reactors elsewhere. I could picture the big D-D reactor running on a large comet or dwarf planet like Pluto producing D-³He for smaller reactors on spacecraft. (D-T not only produces a lot of neutrons but the T has a half life of 12 or so years and won't last for long journies.)
My guess is that interstellar travelers would develop a lifestyle that works around the frost line, where generic bodies above a certain size have liquid water inside. If they were grabby they might consume Ceres or Pluto but might not really care about dry, idiosyncratic worlds like the Earth and Mars.