Indeed it would. It certainly wouldn't be possible if they needed heat and pressure. See this part of the article:
> Our Fuel Forges are similar in many ways to hydrogen electrolyzers, in that they consist of many layers of cells, each consisting of a cathode, an anode, and a separator. In an H2 Electrolyzer, the anode is where electrons are stripped from water, producing oxygen, and the cathode is where electrons are added to protons, producing hydrogen gas. In our system, the anode works the same way, but our cathode, in addition to making H2, also makes liquid fuels. Both systems have capital costs dominated by the costs of the electrochemical stacks.
> This brings us to the issue of economies of scale. For high temperature / high pressure systems like Fischer Tropsch or e-methanol to gasoline (MTG), economies of scale mean large refinery installations that cost billions of dollars and years to build (and still don’t get to cost-competitive fuels). For modular, mobile systems like our Titan Fuel Forges, however, economies of scale mean mass manufacturing.
Heat and pressure are readily available in small-format equipment.
What would make a difference are whether it is expected to start and stop operation, how much supervision it needs, and how much customization is desirable. The quoted text above cites ability to manufacture mass numbers of units, and by implication to distribute, install, and operate them with minimal attention to details.
> Our Fuel Forges are similar in many ways to hydrogen electrolyzers, in that they consist of many layers of cells, each consisting of a cathode, an anode, and a separator. In an H2 Electrolyzer, the anode is where electrons are stripped from water, producing oxygen, and the cathode is where electrons are added to protons, producing hydrogen gas. In our system, the anode works the same way, but our cathode, in addition to making H2, also makes liquid fuels. Both systems have capital costs dominated by the costs of the electrochemical stacks.
> This brings us to the issue of economies of scale. For high temperature / high pressure systems like Fischer Tropsch or e-methanol to gasoline (MTG), economies of scale mean large refinery installations that cost billions of dollars and years to build (and still don’t get to cost-competitive fuels). For modular, mobile systems like our Titan Fuel Forges, however, economies of scale mean mass manufacturing.