I agree that making computing power mobile makes it enormously more expensive, especially if you consider batteries unacceptable. But making computing power remote means that you need to spend energy on a radio to access it. That's a good tradeoff for some things, but not for others. In my other comment, note that if we believe Ambiq's datasheet, we can get the CPU speed of a SPARC 20 for 1.8 milliwatts.
It turns out the chip also includes a Bluetooth Low Energy 5 radio, so you can use it to remotely access more powerful stationary workstations via networking, as long as you're within a few meters of a base station. The radio costs 10 milliwatts when you're running it, six times as much as the Pentium-class CPU. Normal radios (Wi-Fi, cellphones) cost orders of magnitude more than that.
So constant remote wireless access to more powerful stationary workstations doesn't start to save energy until the amount of computation you're accessing is close to a gigaflop. Maybe closer to a teraflop if we're talking about streaming full-motion video. Intermittent remote access, of course, is a more reasonable proposition.
It's true that gaming commonly uses teraflops or petaflops of computing power, and plugging in such a beast in a server closet is a huge improvement over trying to somehow cram it into your pocket. But there are a lot of day-to-day things I do with a computer — recompiling my text editor, writing stupid comments on internet message boards, chatting on IRC, simulating an analog circuit, reading Wikipedia — that very much do not require gigaflops of computing power.
(Remote wired access of course can use very little power indeed, but if you're in a position to plug into a wire, you might as well deliver power over that wire too.)
If you take a modern cellphone and take almost all the processing power out of it, you still have a 1000-milliwatt radio and a 1000-milliwatt backlit screen. So you aren't going to get multiple days of battery life that way. 1000 milliwatts is enough to pay for dozens of gigaflops of computing power nowadays.
Myself, I have another reason: I travel, though I've traveled very little during the pandemic. But I am often someplace other than at home: at a café, in a park, at the office, in a bus, in the subway, in a taxi, visiting a friend in another city, at my in-laws' house, and so on. All of these places are out of Bluetooth range of my house. I could obtain internet bandwidth from a commercial provider, but that sacrifices privacy, it's never reliable, and I don't consider it reasonable to make my core exocortical functions dependent on the day-to-day vagaries of mere commerce. Personal autonomy is one of my core values.
I agree that making computing power mobile makes it enormously more expensive, especially if you consider batteries unacceptable. But making computing power remote means that you need to spend energy on a radio to access it. That's a good tradeoff for some things, but not for others. In my other comment, note that if we believe Ambiq's datasheet, we can get the CPU speed of a SPARC 20 for 1.8 milliwatts.
It turns out the chip also includes a Bluetooth Low Energy 5 radio, so you can use it to remotely access more powerful stationary workstations via networking, as long as you're within a few meters of a base station. The radio costs 10 milliwatts when you're running it, six times as much as the Pentium-class CPU. Normal radios (Wi-Fi, cellphones) cost orders of magnitude more than that.
So constant remote wireless access to more powerful stationary workstations doesn't start to save energy until the amount of computation you're accessing is close to a gigaflop. Maybe closer to a teraflop if we're talking about streaming full-motion video. Intermittent remote access, of course, is a more reasonable proposition.
It's true that gaming commonly uses teraflops or petaflops of computing power, and plugging in such a beast in a server closet is a huge improvement over trying to somehow cram it into your pocket. But there are a lot of day-to-day things I do with a computer — recompiling my text editor, writing stupid comments on internet message boards, chatting on IRC, simulating an analog circuit, reading Wikipedia — that very much do not require gigaflops of computing power.
(Remote wired access of course can use very little power indeed, but if you're in a position to plug into a wire, you might as well deliver power over that wire too.)
If you take a modern cellphone and take almost all the processing power out of it, you still have a 1000-milliwatt radio and a 1000-milliwatt backlit screen. So you aren't going to get multiple days of battery life that way. 1000 milliwatts is enough to pay for dozens of gigaflops of computing power nowadays.
Myself, I have another reason: I travel, though I've traveled very little during the pandemic. But I am often someplace other than at home: at a café, in a park, at the office, in a bus, in the subway, in a taxi, visiting a friend in another city, at my in-laws' house, and so on. All of these places are out of Bluetooth range of my house. I could obtain internet bandwidth from a commercial provider, but that sacrifices privacy, it's never reliable, and I don't consider it reasonable to make my core exocortical functions dependent on the day-to-day vagaries of mere commerce. Personal autonomy is one of my core values.