Hacker News new | past | comments | ask | show | jobs | submit login

There are two very good ways of understanding Euler's formula and one is the "circular motion" explanation given by another comment. Both are very similar.

The other is that "multiplication of complex numbers is rotation" (which can be demonstrated purely by algebraic manipulation) and that "exponentiation is repeated multiplication". If we know what e^(ix) is then we also know what e^(2ix) is. It is the same "vector" as e^(ix) but the length of the vector will be squared and the angle it makes with the real axis will be doubled.

It is trivial to differentiate exponents like a^(x) and we get that the derivative is simply a constant multiple of itself (depending only on "a"). We choose "e" to be the choice of real number that makes the constant 1. (We can also rigorously justify that such a choice of real number exists.)

Now, what is the value of e^(ix) for very small positive values of x? It is approximately the value of e^(ix) at zero plus x times the value of the derivative at zero. (This is just the Taylor series.) In other words, for small x, e^(ix) is essentially 1 + ix except we know our answer should have magnitude 1 so we interpret e^(ix) as having magnitude 1 and angle x for small x. The properties of exponentiation as repeated multiplication and multiplication of complex numbers being rotation justifies interpreting e^(ix) as having magnitude 1 and angle x for all x.

This is not very rigorous but it is the gist of the matter. Many tools in modern analysis were created to make arguments like this rigorous so this could definitely be considered a good way to understand complex exponentiation.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: