Hacker News new | past | comments | ask | show | jobs | submit login

Why even bother having a LIDAR system on your self driving car if it doesn't have sufficient resolution to detect a person standing right in front of it?

This doesn't seem like an edge case at all. Pedestrian crossing the road at a normal walking pace, and no obstructions in the way which would block the car's vision. The fact that it's dark out should be irrelevant to every sensor on that car other than the cameras.

Something obviously went terribly wrong here; either with the sensors themselves or the software. Probably both.




For detecting larger obstacles like buildings or other vehicles would be my guess.

Realistically faster sensors should be used to detect obstacles. LIDARs I could find with some cursory googling can run up to 15hz. Computer vision systems can run much faster (I have a little JeVois camera that'll do eyeball tracking at 120hz onboard, I assume something that costs more can do better).

But more importantly, you're vastly trivializing the problem - Standing right in front of it, sure the LIDAR will see the person no problem. Standing 110 feet away (which would be min stopping distance at that speed)? Realizing that, for a LIDAR with a 400' range at 15hz moving at 40mph you get ~7 samples of a point before you're at it... For at least the first 3 frames that person is going to look like sensor noise. At 110 feet that person (which I'm calling a 2' wide target) is 1 degree of your sensor measurement.

It's not that it's useless or broken, more just this a seriously bad case where optical tracking couldn't work and where LIDAR is particularly ineffective at seeing the person because of how it works. More effective might be dedicated time of flight sensors in the front bumpers, unsure how long a range those can get, but they are also relatively "slow" sensors.


Is 360 degree lidar really needed? A smaller FOV and higher resolution for 120-180 degrees pointed forward seems a better bet.


It’s not mutually exclusive either. You can have lower frequency, lower angular res 360 spinning LIDAR for low granularity general perception, and also have much higher frequency, brighter, and lower FOV (~90-120deg) solid state lidar mounted at the very least on the front corners of the car. We should be absolutely littering these vehicles with sensors, there’s no reason to be conservative at this stage.




Consider applying for YC's Spring batch! Applications are open till Feb 11.

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: