It seems like about two semesters' worth of material in here, so 3 hours classroom time + 7 hours homework/self-study time, for 36 weeks, would give 360 hours. 900 pages divided by 360 hours is 2.5 pages per hour, a rather reasonable rate for study (this is not as dense as an academic paper).
This covers intro to proofs, mathematical logic, number theory, graph theory, combinatorics, and probability. In a typical undergrad math curriculum, these would be five or six different courses. So if you have a two-semester course or self-study covering this 900-page textbook, it's probably more efficient than learning the material in the math department by a factor of 2.5:1 or 3:1.
Yes, stuff's been cut. This is more of a survey of these fields with the emphasis on the most important points, and informing you of the most basic parts. So if you encounter one of the more specialized problems that might have been covered in a more specialized course, you'll have hints on where to look, what to Google for, and what sort of reasoning to use.
This covers intro to proofs, mathematical logic, number theory, graph theory, combinatorics, and probability. In a typical undergrad math curriculum, these would be five or six different courses. So if you have a two-semester course or self-study covering this 900-page textbook, it's probably more efficient than learning the material in the math department by a factor of 2.5:1 or 3:1.
Yes, stuff's been cut. This is more of a survey of these fields with the emphasis on the most important points, and informing you of the most basic parts. So if you encounter one of the more specialized problems that might have been covered in a more specialized course, you'll have hints on where to look, what to Google for, and what sort of reasoning to use.