> It's even addressed in the abstract of the paper.
Where?
edit: located below (italics added) thanks. The environmental costs of launch are considered. I can't see the environmental impact of manufacture considered explicitly, though.
Abstract:
If it were to become apparent that dangerous changes in global climate were inevitable, despite greenhouse gas controls, active methods to cool the Earth on an emergency basis might be desirable. The concept considered here is to block 1.8% of the solar flux with a space sunshade orbited near the inner Lagrange point (L1), in-line between the Earth and sun. Following the work of J. Early [Early, JT (1989) J Br Interplanet Soc 42:567–569], transparent material would be used to deflect the sunlight, rather than to absorb it, to minimize the shift in balance out from L1 caused by radiation pressure. Three advances aimed at practical implementation are presented. First is an optical design for a very thin refractive screen with low reflectivity, leading to a total sunshade mass of ≈20 million tons. Second is a concept aimed at reducing transportation cost to $50/kg by using electromagnetic acceleration to escape Earth's gravity, followed by ion propulsion. Third is an implementation of the sunshade as a cloud of many spacecraft, autonomously stabilized by modulating solar radiation pressure. These meter-sized “flyers” would be assembled completely before launch, avoiding any need for construction or unfolding in space. They would weigh a gram each, be launched in stacks of 800,000, and remain for a projected lifetime of 50 years within a 100,000-km-long cloud. The concept builds on existing technologies. It seems feasible that it could be developed and deployed in ≈25 years at a cost of a few trillion dollars, <0.5% of world gross domestic product (GDP) over that time.
> The CO2 added to the atmosphere from burning 2 billion tons of rocket fuel cannot be negligible.
The quote from the abstract that addresses it:
> Second is a concept aimed at reducing transportation cost to $50/kg by using electromagnetic acceleration to escape Earth's gravity, followed by ion propulsion.
More detail later in the paper:
> Because of its enormous area and the mass required, shading from space has in the past been regarded as requiring manufacture in space from lunar or asteroid material and, thus, as rather futuristic. Here we explore quantitatively an approach aimed at a relatively near-term solution in which the sunshade would be manufactured completely and launched from Earth, and it would take the form of many small autonomous spacecraft (“flyers”).
Where?
edit: located below (italics added) thanks. The environmental costs of launch are considered. I can't see the environmental impact of manufacture considered explicitly, though.
Abstract:
If it were to become apparent that dangerous changes in global climate were inevitable, despite greenhouse gas controls, active methods to cool the Earth on an emergency basis might be desirable. The concept considered here is to block 1.8% of the solar flux with a space sunshade orbited near the inner Lagrange point (L1), in-line between the Earth and sun. Following the work of J. Early [Early, JT (1989) J Br Interplanet Soc 42:567–569], transparent material would be used to deflect the sunlight, rather than to absorb it, to minimize the shift in balance out from L1 caused by radiation pressure. Three advances aimed at practical implementation are presented. First is an optical design for a very thin refractive screen with low reflectivity, leading to a total sunshade mass of ≈20 million tons. Second is a concept aimed at reducing transportation cost to $50/kg by using electromagnetic acceleration to escape Earth's gravity, followed by ion propulsion. Third is an implementation of the sunshade as a cloud of many spacecraft, autonomously stabilized by modulating solar radiation pressure. These meter-sized “flyers” would be assembled completely before launch, avoiding any need for construction or unfolding in space. They would weigh a gram each, be launched in stacks of 800,000, and remain for a projected lifetime of 50 years within a 100,000-km-long cloud. The concept builds on existing technologies. It seems feasible that it could be developed and deployed in ≈25 years at a cost of a few trillion dollars, <0.5% of world gross domestic product (GDP) over that time.